
Webhooks - GO1

Using our proprietary webhook system (v3), you can receive real-time notifications of the events
happening in the Go1 ecosystem. For example, you can configure the webhook via the Public
API that can notify the developer whenever the content in Go 1 is completed or
decommissioned.

In this documentation, we have covered the following topics that will help you navigate
throughout the webhook system of Go1:

❖ Why Use Webhooks
❖ Available Webhook Endpoints
❖ Event Types
❖ The Webhook Header
❖ Creating A New Webhook
❖ Edit a Webhook
❖ Enable/Disable Webhook
❖ Webhook Validation with Signature
❖ Webhooks Authentication
❖ Webhooks Retries
❖ The Webhook Event Object

Let’s get started 🚀

Why Use Webhooks
Go1 has upgraded its webhook version, offering you relatively improved usability with several
key advantages for utilizing the webhook service.

❖ Webhooks for enrollment events will trigger when the event occurs on any connected
child portal. This means you only need to create one enrollment webhook for all your
customers.

❖ The Go1 webhook service also supports retries. If a webhook was not successfully
received, for instance then Go1 will attempt to send the webhook again.

❖ The webhook offers to keep the data synched between the developer’s own application
and the Go1 platform.

The Webhooks for Developers

Go1 webhooks offers unique advantages to keep the data synchronized between the
developer’s own application and Go1.

With Go1 webhook system, the developers receive real-time notifications (as soon as any
change is executed) without the need to poll out the Go1 API to check for the “changes”
executed by an object, hence, keeping the developer’s application always synced.

❖ With real-time notifications generated by the webhook, the developers can keep their
application up to date with respect to all the events occurring in Go1.

❖ The developer's system will make fewer calls to the Go1 API and far less data will need
to be relayed between the system.

❖ The developers will not need to implement the logic to “diff” the state of your system with
what is stored in the Go1 platform.

Available Webhook Endpoints
Go1 provides the following types of webhook endpoints:

Webhook Endpoint Type Description

POST /webhooks POST Creates a new webhook that will fire events to the given
url.

GET /webhooks GET Returns a list of your webhooks.

PATCH /webhooks/{id} PATCH Updates any of the following fields on an existing
webhook: name, url, secret_key, event types, and
status.

Event Types
Go1 offers two types of webhook events enrollment complete and content decommission.

Event Type Event Trigger Description

enrollment.complete Triggered whenever a user completes a learning object. When
configured for a master portal, the webhook fires for all child
portal completion events.

content.decommission Triggered when a Go1 course is flagged for retirement by its

content provider.

The Webhook Header
The header is the standard to develop a webhook, the key-value parameters that are sent as
part of the webhook request.

The upgraded v3 Webhooks are hosted on the Go1 v3 Public API.

The following header is generated by the webhook service and will be sent with all requests.

GO1 Sample Header

curl -X POST "https://gateway.go1.com/webhooks" \

-H "Content-Type: application/json" \

-H "Authorization: {access_token}" \

-H "Api-Version: 2022-07-01"

GO1 Header Description

Header Description

Content-Type The representation header is used to indicate the original media type of the
resource.

Authorization Allowing access to a protected resource

Api-Version The api version of the resource.

Important: When sending a v3 API request, the users are required to
explicitly set the API version by sending an Api-Version header
with your request. For example: "Api-Version: 2022-07-01"

Creating a New Webhook
Go1 can be configured and sent as an HTTP POST request to any URL.

POST /webhooks
Step 1: Click on create a webhook.

Step 2: Click on the Try it button to configure the webhook.

Step 3: A panel will appear at the right with the sections described below

Section Description

Parameters You can send the parameters with your webhook request by adding the
parameters if any.

Headers You can configure the Headers with the values and you can add more
headers if required.

Body You will have a sample request body in which you can also customize the
request body as per your needs.

HTTP Request By default HTTP request is selected. You can have multiple methods to
execute the POST webhook using different programming languages.

Step 4: Click on the Send button to execute the webhook request with the parameters defined.

Parameters
(Key)

Type Description Required/Optional

name string The name or description of what the webhook
is used for.

Optional

url string The URL of the webhook endpoint Required

secret_key string An optional secret key, identifying each event
as coming from a trusted Go1 source.

Optional

event_types string The event for which the webhook was
triggered. i.e. ["enrollment.complete"] or
["content.decommission"]

Required

Response Code
If the POST URL hit the API then it will return the response code to the user to acknowledge
whether the POST URL is executed successfully or has some error(s).

API Response Code Description

201 Webhook was created successfully.

400 Invalid POST parameters provided.

403 Invalid permission to create the webhook.

Response Object
The 201 code will return the response object:

{

"id": "xUjKifleke4u",

"portal_id": "11905591",

"name": "My webhook for course completion",

"url": "https://webhook-consumer.com",

"secret_key": "MyS3cretK#y",

"event_types": ["enrollment.complete"],

"status": "active",

"created_by": "19491473",

"created_date": "2022-03-29T01:29:36.000Z"

"last_updated_by": "19491473",

"last_updated_date": "2022-03-29T01:29:36.000Z"

}

Object Properties Description

id ID for the webhook configuration.

portal_id Go1 portal against which the webhook is configured

name Name of the webhook

url The webhook URL

secret_key An optional secret key, identifying each event as coming from a trusted
Go1 source.

event_types The event for which the webhook was triggered. i.e.
["enrollment.complete"] or ["content.decommission"]

status The status of the webhook. It can be active or inactive.

created _by The user ID of the user who created the webhook.

created_date Time at which the webhook was created (ISO 8601 in UTC).

last_updated_by Webhook updated by whom

last_updated_date The date when the webhook was last updated.

The other codes will not return anything in the form of an object.

GET /webhooks
The GET method is used to retrieve all the webhooks available in the Go1 portal. It returns a list
of webhooks in the form of an object response.

Response Code
If the GET URL hit the API then it will return the response code to the user to acknowledge
whether the GET URL is executed successfully or has some error(s).

API Response Code Description

200 The GET URL executed successfully with returning the webhooks object

403 Invalid permission to fetch the webhooks.

Response Object
The 201 code will return the list of webhooks in the form of an object:

{

"total": 1,

"hits": [

{

"id": "xUjKifleke4u",

"portal_id": "11905591",

"name": "My webhook for course completion",

"url": "https://webhook-consumer.com",

"secret_key": "MyS3cretK#y",

"event_types": [

"enrollment.complete"

],

"status": "active",

"created_by": "19491473",

"created_date": "2022-03-29T01:29:36.000Z"

"last_updated_by": "19491473",

"last_updated_date": "2022-05-19T01:20:16.000Z"

}

]

}

Object Properties Description

total The total number of webhooks returned.

hits The array of webhook objects.

id ID for the webhook configuration.

portal_id Go1 portal against which the webhook is configured

name Name of the webhook

url The webhook URL

secret_key An optional secret key, identifying each event as coming from a trusted
Go1 source.

event_types The event for which the webhook was triggered. i.e.
["enrollment.complete"] or ["content.decommission"]

status The status of the webhook. It can be active or inactive.

created _by The user ID of the user who created the webhook.

created_date Time at which the webhook was created (ISO 8601 in UTC).

last_updated_by Webhook updated by whom

last_updated_date The date when the webhook was last updated.

Edit a Webhook
You can update a webhook in the Go1 portal by providing a PATCH request in the HTTPS
request URL.

By sending the params in the body, you can update the webhooks fields such as name, url,
secret_key, event_types, fire_child_portal_events, and status.

PATCH /webhooks/{id}
This is the PATCH webhook URL you need whenever you are going to update the webhooks.
The {id} in the URL is defined by the content you want to update.

PATCH Request Sample

{

"name": "My new webhook name",

"url": "https://newUrlForWebhook",

"secret_key": "my-secret-key-changed",

"event_types": ["enrollment.complete"],

"fire_child_portal_events": true,

"status": active

}

Parameters (Key) Type Description

name string A name or description of what the webhook is used for.

url string The URL of the webhook endpoint.

secret_key string An optional secret key, identifying each event as coming from
a trusted Go1 source.

event_types string The event for which the webhook was triggered. i.e.
["enrollment.complete"] or ["content.decommission"]

fire_child_portal_events string The parameter can be configured to include
events triggered by all connected portals that can be defined
as a boolean value. For example: “true” or “false”

status string The status of the webhook. It can be active or inactive.

Response Code
If the PATCH URL hits the API then it will return the response code to the user to acknowledge
whether the PATCH URL is executed successfully or has some error.

API Response Code Description

200 The Webhook was updated successfully.

401 The user is unauthenticated.

403 The user is not authorized.

404 The Webhook is not found.

500 The internal server error.

Response Object
The 200 code will return the response object of the webhook you have updated.

{

"id": "xUjKifleke4u",

"portal_id": "11905591",

"name": "My new webhook name",

"url": "https://newUrlForWebhook",

"secret_key": "my-secret-key-changed",

"event_types": ["enrollment.complete"],

"status": "active",

"created_by": "19491473",

"created_date": "2022-03-29T01:29:36.000Z"

"last_updated_by": "19491473",

"last_updated_date": "2022-05-19T01:20:16.000Z"

}

Object Properties Description

id ID for the webhook configuration.

portal_id Go1 portal against which the webhook is configured

name Name of the webhook

url The webhook URL

secret_key An optional secret key, identifying each event as coming from a trusted
Go1 source.

event_types The event for which the webhook was triggered. i.e.
["enrollment.complete"] or ["content.decommission"]

status The status of the webhook. It can be active or inactive.

created _by The user ID of the user who created the webhook.

created_date Time at which the webhook was created (ISO 8601 in UTC).

last_updated_by Webhook updated by whom

last_updated_date The date when the webhook was last updated.

Enable/Disable Webhook

PATCH /webhooks/{id}
The users can activate or deactivate the webhooks by PATCH URL to define the
“active”/”inactive” in the status parameter.

PATCH Request Sample

{

"name": "My new webhook name",

"url": "https://newUrlForWebhook",

"secret_key": "my-secret-key-changed",

"event_types": ["enrollment.complete"],

"fire_child_portal_events": true,

"status": active

}

Parameters (Key) Type Description

name string A name or description of what the webhook is used for

url string The URL of the webhook endpoint.

secret_key string An optional secret key, identifying each event as coming
from a trusted Go1 source.

event_types string The event for which the webhook was triggered. i.e.
["enrollment.complete"] or ["content.decommission"]

fire_child_portal_events string The parameter can be configured to include
events triggered by all connected portals and that can be
defined as a boolean value. For example: “true” or “false”

status string The status of the webhook. It can be active or inactive.

Response Code
If the PATCH URL hit the API then it will return the response code to the user to acknowledge
whether the PATCH URL is executed successfully or has some error.

API Response Code Description

200 The Webhook was updated successfully.

401 The user is unauthenticated.

403 The user is not authorized

404 The Webhook is not found.

500 The internal server error

Response Object
The 200 code will return the response object of the webhook you have updated.

{

"id": "xUjKifleke4u",

"portal_id": "11905591",

"name": "My new webhook name",

"url": "https://newUrlForWebhook",

"secret_key": "my-secret-key-changed",

"event_types": ["enrollment.complete"],

"status": "active",

"created_by": "19491473",

"created_date": "2022-03-29T01:29:36.000Z"

"last_updated_by": "19491473",

"last_updated_date": "2022-05-19T01:20:16.000Z"

}

Object Properties Description

id ID for the webhook configuration.

portal_id The Go1 portal against which the webhook is configured

name Name of the webhook

url The webhook URL

secret_key An optional secret key, identifying each event as coming from a trusted
Go1 source.

event_types The event for which the webhook was triggered. i.e.
["enrollment.complete"] or ["content.decommission"]

status The status of the webhook. It can be active or inactive.

created_by The user ID of the user who created the webhook.

created_date Time at which the webhook was created (ISO 8601 in UTC).

last_updated_by Webhook updated by whom

last_updated_date The date when the webhook was last updated.

Webhook Validation with Signature

Verification of Go1 Request
In order to secure the webhooks, the system verifies the request which is coming from the Go1
portal to hit the webhook endpoints.

Receiving the API hit calls from Go1 can optionally sign the webhook events which are sent to
your endpoints by including a signature in each request’s header. This allows you to verify that
event requests were sent by Go1 and not by an unauthorized third party.

In order to activate the signature, create or update your webhook with a "secret_key" as
described in our API Documentation.

Note: The secret key length cannot exceed 64 characters.

After setting up a "secret_key" all requests made to your webhook endpoint will include a
"Go1-Signature" value in the header. An example payload could look like this:

POST /webhooktest HTTP/1.1

Host: api.go1.com

Content-Length: 252

Content-Type: application/json

Go1-Signature:

t=1588141753,v1=fa818dc59df5b5c7c42517dedf24d85ca2184201d03ed24bb6e2c7bf766

b7e89

User-Agent: GO1 API v1.0

{

"type":"user.create",

"fired_at":"2020-04-29T06:29:13+0000",

"data": {

"Id":"8191190",

"email":"new.user@go1.com",

"full_name":"New User",

"first_name":"New",

"last_name":"User",

"profile_picture":null,

"status":null,

"created_time":"1588141753",

"account":null

}

}

Verification of Webhook Signature
As you have observed in the code block above, the Go1-Signature is included in the header.

Go1-Signature:

t=1588141753,

v1=fa818dc59df5b5c7c42517dedf24d85ca2184201d03ed24bb6e2c7bf766b7e89

The signature is generated by two partitions:

Signature Property Description

“t” The timestamp when the signature is created. The timestamp can be used to
prevent replay attacks, by rejecting requests containing a timestamp that is
too far from the past.

“v” This contains the signature strings. The signature itself is generated using a
hash-based message authentication code (HMAC) with the SHA-256
algorithm.

Step 1: Extract the timestamp and signature from the request header. Split the header value of
"Go1-Signature", using the "," character as the separator, to retrieve an array of components.
Then split each component, using the "=" character as the separator, to get a key and value
pair.

The value for the key t corresponds to the timestamp, and v1 corresponds to the signature.

Step 2: Calculate your own signature. Concatenate the following components to a string:

- The timestamp

- The "." character

- The JSON payload as a string,

For example, for the payload you should have a string looking like this:

'1588141753.{

"type":"user.create",

"fired_at":"2020-04-29T06:29:13+0000",

"data": {

"id":"8191190",

"email":"new.user@go1.com",

"full_name":"New User",

"first_name":"New",

"last_name":"User",

"profile_picture":null,

"status":null,

"created_time":"1588141753",

"account":null

}

}'

Now use the "secret_key" which you have set up for this webhook earlier to compute an HMAC
with the SHA256 hash function:

This is the PHP and Node.js example hash function:

#PHP Example:

$calculatedSignature = hash_hmac('sha256', 'TIMESTAMP.JSON_PAYLOAD',

'MY_SECRET_KEY');

#Node.JS Example

const crypto = require("crypto");

let hmac = crypto.createHmac("sha256", 'MY_SECRET_KEY');

let calculatedSignature = hmac.update(Buffer.from('TIMESTAMP.JSON_PAYLOAD',

'utf-8')).digest("hex");

Step 3: Compare the signature you have received in the request with the expected one which
you calculated yourself. If they match, the request and payload come from a sender who knows
your “secret_key”.

Security with the Webhooks
In addition to validations the webhooks are allocated the IP Ranges. The Go1 Platform is using
the IP range 20.188.251.48/28 (Australia East) and 13.67.161.224/28 (Central US) for traffic
from its Web/API fleet. This whole range is solely allocated to Go1. You can expect connections
from webhooks to come from those IPs and allow them.

mailto:new.user@go1.com

Webhooks Authentication
The access_token used in the authorization parameter of the webhook header helps in
navigating the Go1 portal on which the user will receive the webhook events.

Go1 uses the OAuth 2.0 standard as a framework for third parties to gain authorization and
make API requests on behalf of a Go1 user.

In Go1, following OAuth 2.0 specifications, OAuth clients are used to request access
authorization from users, to act on their behalf, and will produce tokens that can be submitted to
APIs to verify requests.

For more information about the Authentication and Authorization, you can visit the link here.

Webhooks Retries
When a webhook is fired, a retry pattern will trigger if either of the following occurs:

Go1 receives no response from your configured endpoint within 10 seconds.
Go1 receives an HTTP response code that is outside the 200 range (eg, 500 - Internal Server
Error)

The retry pattern is as follows:

Attempts Time Slots

Attempt 2 After 30 seconds

Attempt 3 After 15 minutes (later than attempt 2)

Attempt 4 After 4 hours (later than attempt 3)

Attempt 5 After 24 hours (later than attempt 4)

Important note: At this time, if the 5th attempt does not receive a success response, then the
webhook will fail quietly without an alert or notification.

The Webhook Event Object
Once a webhook is created, the webhook event object will be fired to the given endpoint URL
that is specified when creating your webhook.

Sample Webhook Event Object:

https://www.go1.com/developers/customers/concepts/authentication-and-authorization

{

"id": "hg4JWUDbT55B",

"event_type": "enrollment.complete",

"webhook_version": "3.0.0",

"sent": "2022-03-29T01:29:36.676Z",

"attempt_number": 1,

"url": "https://webhook.site/dd15f234-5160-43e5-b405-a6765cdc8292?",

"webhook_id": "auto generate uuid will be here",

"data": {

"id": "101916887",

"lo_id": "741712",

"portal_id": "11861197",

"event_time": "2022-03-29T01:29:36.000Z"

}

}

Object Properties Description

id Unique identifier for the object. Represents the webhook send attempt
and will be consistent across all retries.

event_type The event for which the webhook was triggered. i.e.
["enrollment.complete"] or ["content.decommission"]

webhook_version Hardcoded 3.0.0 until subsequent versions are also supported.

sent Time at which the webhook attempt was sent (ISO 8601 in UTC).

attempt_number The attempt number as per the retry pattern.

url The endpoint URL of the configured webhook.

webhook_id Auto-generated ID for the webhook object itself.

data Data object as per event type configured (below)

`

Sample Data Object

{

"id": "101916887",

"lo_id": "741712",

"portal_id": "11861197",

"event_time": "2022-03-29T01:29:36.000Z"

}

Object Properties Description

id The ID of the corresponding enrolment.

lo_id The learning object for which the completion occurred.

portal_id The Go1 portal against which the completion occurred.

event_time Time at which the enrolment was completed (ISO 8601 / UTC).

